\(\int \frac {c+d x+e x^2+f x^3}{\sqrt {a+b x^4}} \, dx\) [533]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 276 \[ \int \frac {c+d x+e x^2+f x^3}{\sqrt {a+b x^4}} \, dx=\frac {f \sqrt {a+b x^4}}{2 b}+\frac {e x \sqrt {a+b x^4}}{\sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{2 \sqrt {b}}-\frac {\sqrt [4]{a} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{b^{3/4} \sqrt {a+b x^4}}+\frac {\sqrt [4]{a} \left (\frac {\sqrt {b} c}{\sqrt {a}}+e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^4}} \]

[Out]

1/2*d*arctanh(x^2*b^(1/2)/(b*x^4+a)^(1/2))/b^(1/2)+1/2*f*(b*x^4+a)^(1/2)/b+e*x*(b*x^4+a)^(1/2)/b^(1/2)/(a^(1/2
)+x^2*b^(1/2))-a^(1/4)*e*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticE
(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)
/b^(3/4)/(b*x^4+a)^(1/2)+1/2*a^(1/4)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)
))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*(e+c*b^(1/2)/a^(1/2))*((b*x^4
+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/b^(3/4)/(b*x^4+a)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 276, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {1899, 1212, 226, 1210, 1262, 655, 223, 212} \[ \int \frac {c+d x+e x^2+f x^3}{\sqrt {a+b x^4}} \, dx=\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (\frac {\sqrt {b} c}{\sqrt {a}}+e\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 b^{3/4} \sqrt {a+b x^4}}-\frac {\sqrt [4]{a} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{b^{3/4} \sqrt {a+b x^4}}+\frac {d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{2 \sqrt {b}}+\frac {e x \sqrt {a+b x^4}}{\sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {f \sqrt {a+b x^4}}{2 b} \]

[In]

Int[(c + d*x + e*x^2 + f*x^3)/Sqrt[a + b*x^4],x]

[Out]

(f*Sqrt[a + b*x^4])/(2*b) + (e*x*Sqrt[a + b*x^4])/(Sqrt[b]*(Sqrt[a] + Sqrt[b]*x^2)) + (d*ArcTanh[(Sqrt[b]*x^2)
/Sqrt[a + b*x^4]])/(2*Sqrt[b]) - (a^(1/4)*e*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2
]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(b^(3/4)*Sqrt[a + b*x^4]) + (a^(1/4)*((Sqrt[b]*c)/Sqrt[a] + e
)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)],
 1/2])/(2*b^(3/4)*Sqrt[a + b*x^4])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1262

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(d + e*x)^q
*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x]

Rule 1899

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[Sum[x^j*Sum[Coeff[P
q, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b
, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {c+e x^2}{\sqrt {a+b x^4}}+\frac {x \left (d+f x^2\right )}{\sqrt {a+b x^4}}\right ) \, dx \\ & = \int \frac {c+e x^2}{\sqrt {a+b x^4}} \, dx+\int \frac {x \left (d+f x^2\right )}{\sqrt {a+b x^4}} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {d+f x}{\sqrt {a+b x^2}} \, dx,x,x^2\right )-\frac {\left (\sqrt {a} e\right ) \int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx}{\sqrt {b}}+\left (c+\frac {\sqrt {a} e}{\sqrt {b}}\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx \\ & = \frac {f \sqrt {a+b x^4}}{2 b}+\frac {e x \sqrt {a+b x^4}}{\sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {\sqrt [4]{a} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{b^{3/4} \sqrt {a+b x^4}}+\frac {\left (\sqrt {b} c+\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} b^{3/4} \sqrt {a+b x^4}}+\frac {1}{2} d \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,x^2\right ) \\ & = \frac {f \sqrt {a+b x^4}}{2 b}+\frac {e x \sqrt {a+b x^4}}{\sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {\sqrt [4]{a} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{b^{3/4} \sqrt {a+b x^4}}+\frac {\left (\sqrt {b} c+\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} b^{3/4} \sqrt {a+b x^4}}+\frac {1}{2} d \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x^2}{\sqrt {a+b x^4}}\right ) \\ & = \frac {f \sqrt {a+b x^4}}{2 b}+\frac {e x \sqrt {a+b x^4}}{\sqrt {b} \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{2 \sqrt {b}}-\frac {\sqrt [4]{a} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{b^{3/4} \sqrt {a+b x^4}}+\frac {\left (\sqrt {b} c+\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} b^{3/4} \sqrt {a+b x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.10 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.54 \[ \int \frac {c+d x+e x^2+f x^3}{\sqrt {a+b x^4}} \, dx=\frac {f \sqrt {a+b x^4}}{2 b}+\frac {d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )}{2 \sqrt {b}}+\frac {c x \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {b x^4}{a}\right )}{\sqrt {a+b x^4}}+\frac {e x^3 \sqrt {1+\frac {b x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {b x^4}{a}\right )}{3 \sqrt {a+b x^4}} \]

[In]

Integrate[(c + d*x + e*x^2 + f*x^3)/Sqrt[a + b*x^4],x]

[Out]

(f*Sqrt[a + b*x^4])/(2*b) + (d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*Sqrt[b]) + (c*x*Sqrt[1 + (b*x^4)/a]*
Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^4)/a)])/Sqrt[a + b*x^4] + (e*x^3*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1
[1/2, 3/4, 7/4, -((b*x^4)/a)])/(3*Sqrt[a + b*x^4])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.90 (sec) , antiderivative size = 208, normalized size of antiderivative = 0.75

method result size
default \(\frac {c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {f \sqrt {b \,x^{4}+a}}{2 b}+\frac {i e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}+\frac {d \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{2 \sqrt {b}}\) \(208\)
risch \(\frac {c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {f \sqrt {b \,x^{4}+a}}{2 b}+\frac {i e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}+\frac {d \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{2 \sqrt {b}}\) \(208\)
elliptic \(\frac {f \sqrt {b \,x^{4}+a}}{2 b}+\frac {c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {d \ln \left (2 x^{2} \sqrt {b}+2 \sqrt {b \,x^{4}+a}\right )}{2 \sqrt {b}}+\frac {i e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}\, \sqrt {b}}\) \(211\)

[In]

int((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

c/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*El
lipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/2*f*(b*x^4+a)^(1/2)/b+I*e*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1
/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)/b^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2)
)^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))+1/2*d*ln(x^2*b^(1/2)+(b*x^4+a)^(1/2))/b^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.11 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.49 \[ \int \frac {c+d x+e x^2+f x^3}{\sqrt {a+b x^4}} \, dx=\frac {4 \, a \sqrt {b} e x \left (-\frac {a}{b}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + a \sqrt {b} d x \log \left (-2 \, b x^{4} - 2 \, \sqrt {b x^{4} + a} \sqrt {b} x^{2} - a\right ) + 4 \, {\left (b c - a e\right )} \sqrt {b} x \left (-\frac {a}{b}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{b}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + 2 \, \sqrt {b x^{4} + a} {\left (a f x + 2 \, a e\right )}}{4 \, a b x} \]

[In]

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

1/4*(4*a*sqrt(b)*e*x*(-a/b)^(3/4)*elliptic_e(arcsin((-a/b)^(1/4)/x), -1) + a*sqrt(b)*d*x*log(-2*b*x^4 - 2*sqrt
(b*x^4 + a)*sqrt(b)*x^2 - a) + 4*(b*c - a*e)*sqrt(b)*x*(-a/b)^(3/4)*elliptic_f(arcsin((-a/b)^(1/4)/x), -1) + 2
*sqrt(b*x^4 + a)*(a*f*x + 2*a*e))/(a*b*x)

Sympy [A] (verification not implemented)

Time = 1.51 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.46 \[ \int \frac {c+d x+e x^2+f x^3}{\sqrt {a+b x^4}} \, dx=f \left (\begin {cases} \frac {x^{4}}{4 \sqrt {a}} & \text {for}\: b = 0 \\\frac {\sqrt {a + b x^{4}}}{2 b} & \text {otherwise} \end {cases}\right ) + \frac {d \operatorname {asinh}{\left (\frac {\sqrt {b} x^{2}}{\sqrt {a}} \right )}}{2 \sqrt {b}} + \frac {c x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} + \frac {e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} \]

[In]

integrate((f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(1/2),x)

[Out]

f*Piecewise((x**4/(4*sqrt(a)), Eq(b, 0)), (sqrt(a + b*x**4)/(2*b), True)) + d*asinh(sqrt(b)*x**2/sqrt(a))/(2*s
qrt(b)) + c*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + e*x**3*g
amma(3/4)*hyper((1/2, 3/4), (7/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(7/4))

Maxima [F]

\[ \int \frac {c+d x+e x^2+f x^3}{\sqrt {a+b x^4}} \, dx=\int { \frac {f x^{3} + e x^{2} + d x + c}{\sqrt {b x^{4} + a}} \,d x } \]

[In]

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/sqrt(b*x^4 + a), x)

Giac [F]

\[ \int \frac {c+d x+e x^2+f x^3}{\sqrt {a+b x^4}} \, dx=\int { \frac {f x^{3} + e x^{2} + d x + c}{\sqrt {b x^{4} + a}} \,d x } \]

[In]

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/sqrt(b*x^4 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {c+d x+e x^2+f x^3}{\sqrt {a+b x^4}} \, dx=\int \frac {f\,x^3+e\,x^2+d\,x+c}{\sqrt {b\,x^4+a}} \,d x \]

[In]

int((c + d*x + e*x^2 + f*x^3)/(a + b*x^4)^(1/2),x)

[Out]

int((c + d*x + e*x^2 + f*x^3)/(a + b*x^4)^(1/2), x)